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Wave forces on vertical bodies of revolution 

By J. D. FENTON 
Atkins Research and Development, Woodcote Grove, Ashley Road, 

Epsom, Surrey, England? 

(Received 1 December 1975) 

The axisymmetry of a body which is diffracting water waves may be exploited to give 
a line integral equation to be solved for the scattered wave field and forces on the body. 
Each term in a previously established surface integral equation is shown to be expres- 
sible as a Fourier series, which is then integrated once analytically. The resulting one- 
dimensional equation is shown to possess singularities, previously ignored by Black 
( 1975). This equation, with series transformations and subtraction of singularities such 
that, all series are quickly convergent and that it has to be solved only along a curve, 
reduces computational effort by some three orders of magnitude. Results obtained by 
this method give good agreement with previous analytical and experimental results, 
even if a rather coarse numerical approximation is used. 

1. Introduction 
In  1950, John obtained a Green’s function for a fluid layer bounded below by a 

horizontal surface and above by a free surface on which (linear) waves were propa- 
gating. This function has been used by several workers, notably Garrison & Chow 
(1972), to set up integral equations for the unknown magnitude of an assumed source 
dist,ribution on the surface of a body immersed in the fluid. After numerical solution of 
this equation the scattered potentials, velocities and pressures may be obtained. 

Black (1975) studied the scattering due to bodies which are axisymmetric about a 
vertical axis and reduced the surface integral equation of Garrison & Chow to a one- 
dimensional equation. In  $ 2  of his paper Black maintained that his Green’s function 
was non-singular. Examination of his equation (2.4) shows that this is not the case, and 
that it possesses a logarithmic singularity. It is surprising that this did not appear in 
his subsequent numerical calculations, but it is hinted at  in his $5, where it is noted 
that the convergence rate of the series term in his Green’s function was ‘roughly lln’. 
In  $ 2  below we derive his function, showing how it is obtained simply from John’s, 
and show that the terms at  the singularity go as rn cos (nO)/n, as r +  1, O-+ 0. The 
sum of these terms to infinity gives In [( 1 - r ) 2 +  02], showing the nature of the singu- 
larity. 

In  $ 3  we take John’s equations, as used by Garrison & Chow, and express them as 
Fourier series in terms of the azimuthal angle about the vertical axis of symmetry, 
obtaining a one-dimensional integral equation analogous to that of Black. The singu- 
larity in the kernel function is subtracted in $4, using a transformation of the series by 
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subtraction and separate summation of asymptotic terms. After a second subtraction 
of the six singularities, these are integrated analytically, so that all subsequent num- 
erical approximation is with smooth bounded functions. Subsequently the integral 
equation is approximated by a matrix equation which may be solved numerically. Tn 
3 5 the results of this, with transformation of series and subtraction of singularities 
similar to those in 0 4, are used to set up matrix expressions for forces, moments and 
pressures on the body. Sample results for a truncated circular cylinder are given 
in $6.  

Here we give the equations for a body of arbitrary shape, as used by Garrison & 
Chow: consider a fixed body of arbitrary shape and position immersed in a fluid of 
depth h above a horizontal surface. We introduce a rectangular co-ordinate system 
with the origin on the sea bed, x in the direction of propagation of waves, y perpendicu- 
lar to this in the plane of the sea bed, and z vertically upwards. The wave train has 
amplitude a (wave height = 2a), wavelength A, wavenumber k = 2n/A, and wave 
frequency cr = 2n/T, where T is the period. Using irrotational flow theory and the 
linearized wave approximation, we have the following equations for a body of arbi- 
trary shape. 

A velocity potential rD exists: 

rD = Re {$(x, y, z )  eciUt} ,  ( 1 . 1 )  

where t is time and $ is a complex variable which may be split into incident and scat- 
tered parts 

where the incident term is well known from linear wave theory, 

- g~ COSh kz $. = - - e i k r  
a c coshkh ’ 

in which g is the gravitational acceleration. 
The scattered potential, as yet unknown, may be assumed to be generated by a 

distribution of sources with strength f (X, Y, 2) over the immersed surface of the body: 

where the variables of integration (X, Y, 2) are the co-ordinates of points on the wetted 
surface of the body, denoted by A. G is a Green’s function, determined by John (1950): 

m - 
G = Co cash kz cash kZ[Y,(kq) - iJo( kq)] + 4 C C, cos (pm Z) COB (p, 2) Ko(pu, q) ,  

m= 1 

where 2 ~ (  v2 - k2) p.“m + v2 c, = 
(k2-Y2) h+v’ (p$ + v2) h - v’ 

co = 

u = a2/g  = lc tanh kh, 

the pnl are positive real roots of v+pmtanpm h = 0, and 

g2 = (x-X)2+(y-- Y)2. (1.5) 

An alternative integral expression for G has been determined (see John 1950) but it is 
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not as convenient for the present work because the independent variables are not as 
simply separated. 

The unknown source strength distribution must be such as to satisfy the boundary 
condition on the body surface, that no fluid passes through the surface. Combining 
( 1  .2)-( 1.4) and differentiating with respect to n, the local outwardly directed normal 
to the surface, to obtain tBe normal Auid velocity, we have 

- 2nf(x, y, z )  + - 24. f ( X ,  Y ,  2) G ( x ,  y, z l x ,  Y ,  2) d A ( X ,  Y ,  2) + 4 ~ 7 &  (x, y, 2 )  = 0. 

(1.6) 
:%IA 

Equation (1.6) is to be satisfied at  all points on the wetted body surface A(x,y,z). 
Once this integral equation has been solved for f, this is substituted into (1.4) to give 
#s(z, y, z ) .  From this, other physical quantities are easily calculated: 

p / p  = a@/at = Re { - icr(& + #J e-iat}, (1.7) 

7 = Re {( - icr/g) (#, + #J ,-id} on z = it, (1.8) 

where p is the pressure at any point and p is fluid density; 

where 7 is the free-surface elevation relat,ive to the undisturbed level. Fluid velocities 
u are given by u = - V@ = Re { - V(Q, + #J e-iat}. 

The total force exerted on the body F and the moment of this force M are given by 

F(t) = - I A p i i d A ,  (1.10) 

M(t) = - p(r x f i )dA ,  (1.11) sa 
where ii is a unit outward normal vector on A and r is the vector from the point about 
which moments are taken. 

2. The Green’s function as a Fourier series 
In  this section we examine the function G defined in (1.5), convert to cylindrical 

co-ordinates and write it as a trigonometric series. Each term in the series is shown to 
have a logarithmic singularity. 

Introducing cylindrical co-ordinates we write 

r2 = x2 + y2, R2 = X 2  + Y2, tan 8 = y / x ,  tan 0 = Y / X ;  

then q 2  := R2+r2- 2Rr cos (0- 0). Making use of Graf’s addition theorem (Watson 

I 1944, $11.3) gives m 

Jo(kq) = C 4 ( k R )  Jj(kr) C O S ~ ( ~  - a), 
j = - w  
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where the upper of the alternative arguments is used if r 2 II and the lower otherwise. 
In  each of the three series the -jth term is equal to the j t h  term. Introducing a Kro- 
necker delta we may write 

m 

i = O  
Jo(kq) = C (2 - Sio) J,(kR) 4(kr) cosj (8 - O), (2.2) 

the other two expressions being transformed in the same way. Substituting into (1.5) 
we have a doubly infinite series, but one in which all independent variables have been 
separated: 

OD m 

+ 4  C Cn,cospmzcospmZ Z (2-aj0)Ki eosj(6-0). (2.3) 
m = l  j=O 

This is similar to Black's equation (2.4)' the only difference being in the angular 
dependence: (2.3) contains cosj(8 - 0), which is cosj8 cosjO + sinj0 sinjO, of which 
Black's expression contains the first term. 

The nature of the singularity can be established by considering (2.3) as 

( r ,  8 '4  --f @,@, 2). 

Examining the first part, all terms of the series i n j  are finite. However for the doubly 
infinite part this is not so. Let 

-+;)) ( 2 . 4 ~ )  Gjo = Co cash (kz) cash (kZ) 4 ( k 

and 

Then we can write (2.3) as 

m /  m \ 

G = j = O  C (ajo+ m = l  C GjnI) (2-6j0)cosj(8-@). 

(2.4b) 

( 2 . 4 ~ )  

As m -+ co, it is easily shown from (1.5) that pm --f mn/h + O(m-l), Cm + l /h  + O ( W - ~ ) ,  
while the product of the Bessel functions goes as 

h 1 - (Rr)-4 - exp ( - mnl R - rl/h). 
2n m 

Thus Gj,+ 2(mn)-l(R1)-4 cosmnz/hcosmnZ/hexp (-mnlR-rJ/h) 

+(mn)-'(Rr)-*exp (--mn/R-rl/h) (cosmn(Z+z)/h+ cosmn(2-z)/h). 

Except for the cases z -+ 2 + 0 or h, which will be treated in the next section, it is the 
second term which is important as z + 2, giving 

Gjm+ (mn)-l exp ( -mnl R - rl/h) cosmn(2 - x)/h 

and O0 " 1  

m = l  m=lm 
2 Gim - -exp(-mn(R-rl/h)cosmn(2-z)/h 

- - 3 In [l - 2 exp ( - nJR - rl/h) cos n(Z - z)/h + exp ( - 2nrJR - rl/h)] 
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(Jolley 1961, §536), which as z+Z and r+Rgives 
m 
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(2.5) 

showing the logarithmic nature of the singularity. 

3. Reduction of integral equation 
In  this and succeeding sections we limit our attention to bodies of revolution, as 

shown in figure 1, formed by rotating a generating curve about the vertical axis. We use 
the integral equation (1.6) together with the Fourier expansion of the Green's function 
(2.4) to obtain a Fourier series, the coefficients of which are integral equations valid on 
the arc AA' of figure 1.  Subsequently it is shown that only the zeroth and first terms 
need be solved to give the forces on the body. 

The source strength f is a function of position on the body and may be written as 
f(s, 8), where the co-ordinate s(r, z )  specifies a point on the curve AA'. As the problem is 
symmetrical about the x axis, we may expandfin a cosine series: 

m 

Substituting (3.1) and (2.4) into (1.6) we have 

dA+4n--Z= 0. (3.2) 
j = O  m = l  an 

We also have (1.3) for q5i, rewritten in cylindrical co-ordinates: 

ga cosh kz $i = _ _  - e i l c r ~ ~ s e .  
u cosh kh 

It is easily shown that the operator 818% for an axisymmetric body traced anticlock- 
wise is a/& = z ' a p  - r'apz, 

where z' = dz/ds and r' = dr/ds. Performing the operation we have 

a#. gak e i b  case 
-a = 
an acoshkh 

(r' sinh kz - iz' cos 8 cosh kz) 

m 

- - gak (r' sinh kz - iz' cos 8 cosh kz) ( 2  - iV,( kr) cos 18 

- - gak x ( 2  -Szo)i'[r'sinh(kz)Jl(kr) -z'cosh (kz)Ji(kr)] cos18, (3.3) 

a cosh kh 1=0 
co 

ucoshkhi=o 

which shows that the incident velocity field has been expressed as a Fourier series with 
coefficients that are functions of r and z. 

Now we can rewrite the second term in (3.2), with (EA = R d O d S ,  where dS is an 
element of AA', so that it becomes 

51 A(#) 5 [(Gio+ 
an S I = O  j = O  m = l  1 cosZOcosj(8-0) dOd8. (3.4) 
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X 
/ f  / /  

FIGURE 1. Section through axisymmetric body with co-ordinate systems. Equation (3.6) is to be 
satisfied a t  all points on the generator AA’. 

Integrating with respect to  0 we have 

From (3.1)-(3.3) and (3.5) we see that the integral equation can be expressed as a 
Fourier series, with each term satisfying the equation. Thus for each I we can write 

2( 2 - aE0) gakil 
[r‘sinh(kz)q(kr)-z’cosh(kz)J;(kr)] = 0, I = 0,1 ,2 ,  ..., (3.6) 

+ r . ~  cosh kh 

and we now have a series of one-dimensional integral equations in place of the original 
surface integral equation. 

4. Solution 
4.1. ATumericaE u ~ ~ r o x i ~ ~ i o n  by a matrix equation 

Equation (3.6), valid on the curve which generates the body, is solved numerically by 
dividing the curve into N line segments and solving the equation at the centre of each. 
We define $i to be the complex dimensionless source strength a t  the centre of element i ,  

and b, to be the dimensionless quantity 

bi = z; cosh (hi) q ( k r i )  - r; sinh (hi) JI(kri) (4 .2 )  

and assume that $ is linear over an element. Then (3.6) can be written as 

N 

j=1 
-$i+ $j~a i i  = bi, i = 1, ..., N ,  (4.3) 
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where the element aii is the integrated contribution of the kernel function over element 
j: 

ad, = $  ~ ( z : ~ - r : ~ ) ( ~ ~ , +  a a   as. 
SJ m = l  

Obviously (4.3) can be written as a matrix equation 

which must be solved for [$J. 
[aij - aijl [llril = Cbil, 

(4.4) 

(4.5) 

4.2. Generation of matrix elements 
Now we need to obtain an expression for nii from (2.4) and (4.4). The first part of the 
kernel function is simply handled, for GI, is continuous and finite. The real part of 
aG,,/ar has a discontinuity at r = R, however any numerical errors associated with this 
will be swamped by numerical treatment of the singularity, so that we use a midpoint 
approximation throughout and can write 

Is, R 2 dS = kC, R, Lj cosh kZ,  

(Y,(kri) - iJ kri 
I (  I))] (4.6) 

JI(kri) (Y,(kR,) - iJI(kR,)) ’ 
- ri sinh kzi 

where integration has been approximated over the element j of length L,. In this 
expression and subsequently, the upper alternative in the curly brackets is to be used 
if Rj < Ti ,  the lower if R, > ri and the mean of the two if R, = ri. 

The next term, /Z(aGzm/an)  RdS, is much more difficult to handle, as the series 
does not converge at  some points. Performing the differentiation we have 

which we have shown in Q 2 to be non-convergent at  ( r ,  z )  = (R, 2). If the asymptotic 
form of Gkrn as m --f 03 is denoted by G&, after some manipulation we can show that 

. mnZ . mnz 
-Zh-l(Rr)-*exp( -mnlR-rl/h) [ ( -- z;) sm sin act“, -=  

an 

Vr’IR-rl 4n2- l h l R - r l  
+ ((T)@-r’- +-- 8mn Rr 

mn mn 

+ VZZ’ mnZ mnz + (( -) x) s i n h c o s -  h 

c o s y ]  - 2’- - +--+- ) C O S T  
v(r - R) z’ h 412 - 1 z‘h 412 + 3 vzr’ mnZ 

R 8mn r 8mn mn 

+ O(m-2 exp ( - mnl R - r \ /h) ) .  (4.8) 

By subtracting terms (4.8) from each term in (4.7) we have a series that converges 
everywhere as m-2 at least. Thus we can transform (4.7) to read 
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where the first sum can be computed with guaranteed convergence. The second sum, 
with terms as given in (4.8), has closed-form expressions, as given by Jolley (1961, 
@499, 500, 536 and 540). Thus we have 

r‘y sin A 
1 - 2y cos A +y2  

- r’y sin X 
+ 1 - 27 cos c + y2 

In (1 - 2y cos C + 7 2 )  
hz’ 412 - 1 hz’ 412 + 3 vr’ 
R 16n r 16n + ($(r - -  R) - - - +- - 

+- - +- ( 2 - 2 )  In (1 - 2ycos A+y2) 
hz’ 412 - 1 hz‘ 4Z2 + 3 vr’ 
R 16n r 16n 2n 

+ (g ( r  - R) - - - 

+((;);(Z+z)+--lR-rl ur ’ (+-) h ’  r (: --- If) - “i; ’) tan-1 ( r::&J 
+(( ; ) g ( Z - z ) - -  vr’ IR-rl hr’ 1 

--- 1 - 412-1 
n ( y ]  ( r  R) 8n ) t a n - l ( l ~ ~ ~ o ” s ) ] ’  

where y = exp(-nIR-rl/h), A = n(2-z)/h, Z = n(Z+z)/h, 

and we can show that each term in (4.10), except the tan-l quantities, shows singular 
behaviour, either first order or logarithmic. Let S6 represent the sum of the six singu- 

z’(R - r )  + r’(2 + z - 2h) 
(R- r)2 + (Z+z- 2h)2 

z‘(R - r )  + r’(2 + z )  
(R - r)2 + ( Z + Z ) ~  

+ 
larities: 

S6 = n-l(Rr)-J 

z’(R - r )  - r’(2 - z )  z’ n2 
+ ( R - r ) 2 + ( 2 - z ) 2  4r h2 

+- In - ( ( R  - r)2 + ( Z + Z ) ~ )  

+ - + vr’ In - ( ( R  - r)2 + (2 + z - 2h)2) (2 ) ;: 

and 

(4.11) 

where the term inside the brackets is everywhere finite and cntinuous, with the 
singularities subtracted. In  our numerical approximation of the integral equation we 
have taken the source strength outside the integral (54.1); t,o the same accuracy we 
can do the same with R, so that we may write 

We can integrate the last term analytically, obtaining a finite contribution to q,. 
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Combining all the contributions we have a very long expression for the matrix co- 
efficients air, but one in which all series converge quickly and all terms are finite. This 
expression is given in the appendix. 

4.3. Solution of matrix equation 

Equation (4.5), which we are to solve for $i, has a complex matrix [aij-&] multi- 
plying a complex column vector [$+I, the result being equal to a real column vector 
[bi] .  There are techniques a.vailable for separating the real and imaginary parts of the 
matrix and solving a series of matrix equations (see, for example, Hogben & Standing 
1974). This seems unnecessarily complicated, for in the present work the matrices 
generated have heavily dominant leading-diagonal terms because of the Sii contribu- 
tions, hence iterative techniques may be used. In  the process of testing the present 
work, a Gauss-Seidel method with complex arithmetic was used. That is, if we have an 
approximation $f to the solution after k iterations, a better approximation is had by 
substituting this into the re-arranged matrix equation (4.3): 

bi-  ($'+ $ ) ($fai j )  

aii - 1 
j=l j = i + l  *?+I = , i = 1 , 2  ,..., N .  

(4.13) 

This process is repeated until it has converged. 

4.4. Estimate of saving with one-dimensional equation 

Consider a fixed sphere which is scattering waves. If the sphere has a radius R and the 
surface is divided into a number of planar elements of side length S, then the number of 
facets is approximately 4nR2/S2. If the above one-dimensional method is used, the 
number of line segments is approximately nR/S. The amount of computational effort 
required to set up and solve the matrix is proportional to at least the square of tho 
number of unknowns, hence the ratio of effort involved using the present method to 
that with a surface integral equation is v If we need the total force on a body 
we need to do the 1 = 0 and 1 = 1 cases, so bhe ratio is fi(S/R)2. If we assume SIR 2: 
the ratio N &. 

5. Forces on body 
Having solved for $i and hence fn(si) we may now obtain the scattered potential 

9, by taking (1.4), with all terms expanded in Fourier series, and subsequently sub- 
st,ituting into (1.7), (1.10) and (1 .11) .  We have 

[equation ( l .4)]  and we have written 

m 

f(s, 0) = C ~ , ( s ) c o s Z ~ ,  dA = Rd0dS 
1=0 

[equation (3.1)] and W 

G = C (2 - aj,) (Gj, + CGj,) cosj(8- 0)  
j=O 
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[equation (2.4)]. Substituting into (1.4) and integrating with respect to 0, we obtain 
00 

~ ( r ,  8, 2) = 2 Z) COS ze, 
1 =0 

where 

$,Z(T, 2) = *ISh(s)R [c6cosh (kz) cosh (kZ) ($k:)q(k;) -iJ,(kR)J, (kr)) 

Now we write this for an element i on the body, using the same degree of approxi- 
mation as in $4: 

where 

The calculation ofcij presents the same problems as that of aij,  for the integrnnd has a 
singularity because of the non-convergence of the series in rn. In  this case, however, it is 
logarithmic rather than first order, and the manipulations are somewhat shorter. 
Performing asymptotics and subtraction of singularities similar to those in $4, we 
obtain the expression for cij given in the appendix. 

From (5.2) and (4.1) we have 

and from $ 3  we have 

which may be written as 

with 

m 

z=o 
$i = 2 $ i l C O S i e ,  

2gacoshkz i' 
$. " = - acoshkh (1  +al,) J,(kr), 

2gai1 

(k a( 1 +alo) cosh kh j=l 
$j c i j  - cosh (kzi) J;(kri) - - 

for the lth component of the combined incident and scattered velocity potential. 
From (1.7) and (1.10) we have 

F(t) = Re [ ipaec iv tSA ($i + $s) A d A ] ,  

in which 

Substituting the Fourier expansion 

A = iz' cos 0 + jz' sin 0 - kr', d A  = R d 0  dS. 

W 

$ = $i+$8 = c $,cOsie 
1=0 

(5.4) 
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FIQIJRE 2. Variation of (a) dimensionless drag force and (b)  dimensionless vertical force with 
wavenumber for a truncated circular cylinder of height 0.7 and diameter 0.4 of the water depth 
h. 0, experimental results from Hogben & Standing (1975) ; -, results from the present theory 
using the elemental subdivision shown in the inset in (a). Fz = horizontal force, Fz = vertical 
force, p = fluid density, a = wave amplitude, D = cylinder diameter, k = wavenumber. 
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1 1 I I 

0 1 2 3 
k D  

FIQURE 3. Dimensionless moment about the base of the cylinder. 

and integrating with respect to 0, the orthogonality of the trigonometric terms shows 
that there is no transverse force, while only the 1 = 0 term contributes to vertical forces 
and the  1 = 1 term to horizontal forces. Thus 

(5.6) 

I F(t) = Re inpcre-igt R(iz’#,(s) - j2rf$,,(s)) dS I ss 

ijlrpcre-iut C Ln R,(izA cj1(.s,) - jZrL ~ # ~ ( s % ) ) ] .  

1 [ n=l  

N 

n = l  

Similarly we have ( 1 . 1 1 )  for the moment on the body. Performing the manipulations 
we find that there is only a (‘pitching’) moment about the y axis, given by the 1 = 1 
term : N 

M(t) = j Re inpcreciUt L, r,  # l ( ~ n )  (zA(zn - z * )  + rA rn) , 

where z* is the elevation of the point about which moments are to be taken. 

6. Results 
A computer program was written for bodies of arbitrary cross-section. As a simple 

test this was applied to a right circular cylinder fixed to the bed in water of depth h: the 
cylinder was 0.7h high and had a diameter c;f 0-4h. These are the same relative dimen- 
sions as those of one of the cylinders tested by Hogben & Standing (1975) at the Nat- 
ional Physical Laboratory, which gave the experimental points on figures 2 and 3. 
Results from the calculations of the present work are shown by the continuous line in 
each case. Agreement for this case, as for others tested, was good. The elemental 
subdivision, shown in the inset of figure 2 (a ) ,  had 11 elements. Convergence of the 
series for the Green’s function, given in the appendix, was extremely rapid, so that 
generally 4-6 terms, rising to 20 a t  the singularities, were sufficient to achieve an 
accuracy of 0.0001. 

The computer program, using the theory and numerical procedures described in this 
paper, was written for axially symmetric bodies of any cross-section. Details are 
available from Dr L. R. Wootton, Atkins Research and Development, Epsom, Surrey. 
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Appendix 
Here we give the expressions for the coefficients of the two main influence matrices 

described in the body of the paper. The first, aij, is the normal velocity at  the point 
(ri, zi) on the body cross-section due to a unit source at the point (Rj ,  Zj); similarly cij 
gives the induced velocity potential. Where two alternatives in curly brackets are 
given, the upper is used if Rj < ri, the lower if R, > ri and the mean of the two if 
Ri = ri. 

h 
2L, + - ( Rj/r i ) )  exp ( - mn 1 Rj - ri I /h) 
h 

v(ri - R,) z; h 4Z2 - 1 z; h 4Z2 + 3 x((I)z'+ z!-- - +-- 
mn ' R, 8mn ri 8mn mn 

mnZj mnz. + vZ,z; mnZj . mnz. vZ,z; + sin - h cos+((-)K) +sinT sin-( h --) mn 

mnZj 
h 

+ cos - sin 
vr; \ Rj - ri I 

mm 
+ ?!x))] 8mn 

z;[cosn(Z,+zi)/h-exp ( -n lR j - r i / /h )  +r;sinn(Z,+x,)/h 

1 - 2exp ( - nl R, - ril /h) cos n(Zj + zi)/h + exp ( - 274 R, - ril/h) 

+ L .  [' h (".)$ ri exp ( - R, - ri I/h) 

z; [cosm(Zj-zi)/h-exp ( -mlRj-ril/h)] -r;sinn(Zj-zi)/h 

1 - 2 exp ( - nl Rj - ril/h) cos n(Zj - zi)/h + exp ( - 2nl Rj - ril/h) 
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Lj R 4 VZ; 412 - 1 hz; 412 + 3 hzi vr; +x($) ( G ( r i - R j ) - - - + -  16n Rj 16n -+G(zj+z,) ri 

x In [ 1 - 2 exp ( - T I  Rj - ri I/h) cos n (Zj + z,)/h + exp ( - 2nI Rj - ri I/h)] 

1 n2 

h2 
x In- (Rj - ri)2 + (Zj + zi - 2h)2) 

4Z2 - 1 hzi 4Z2 + 3 hz; vr; 
16n Ri 16n ri 277 

-+- -+-(zj-zi) 

x In [( 1 - 2 exp ( -nl Rj - r,I/h) cos n(Zj - zi)/h + exp ( - 2nl Rj - ri ( /h ) ]  

L.2' 712 L .  Rj 4 - vz; 
4nri h2 

-- ' 'In - ( (Rj  - ri)2+ (Zi - z i ) 2 )  + -Z h (c) [(+)y(zj+zi) 

1 1  

1 

1 

exp( -nlRj-ril/h)sinn(Zj+zi)/h 
1 -exp( -nIRj-r iI /h)cosn(Zi+zi) /h 

- 412-1 

x tan-1 

L R .  9 - vz; vr; 
+1 h ( r i )  -3 ( ( + } ~ ( z ~ - z ~ ) - - ~ R ~ - r ~ ~ ~ + ] ~  n hri(;-$)) 

exp ( - nl Rj - r, I /h)  sin n (Zj - zi)/h 
1 -exp( -nlRi-r,l/h)cosn(Zj-z,)/h 

x tan-' 

+n-'(Ii( + 1 ,  x i )  +I1( + 1,  zi - 2h) + 11( - 1,  -zi))  
2' 

4ri 
+ 2 (12(zi) + 12(zi - 2h) +I2( - z i ) )  + vr; Iz(zi - 2h),  

where 

Il(s, S) = (z; z; - er; r;) tan-' 

Re, Ze 

RI, 21 

1 ri(R - T i )  + zi(Z + S )  
z(i(Rj - Ti) - $(Zj + 6) 

+ $(z; ri + eri 2;) In ( (R  - rO2 + (2 + S),) , 

ri(R - T i )  + zi(Z + 6) 
z;(Rj - Ti) - r;(Zj + 8) 

%, 2.1 

RI, ZI 

+ 2(z;(Rj - Ti) - r i (Z j  + 8 ) )  tan-1 

+ (ri(R - r i )  + zi(Z + 8) In [(R - ri)2 + (2 + 
in which the limits are 

Rl = Ri - 4.; Li, R, = Rj + +r; Li, Z1 = Zi - $2; Li, 2, = Zj + 42; Lj.  

cij = Lj Rj C, cash (kz i )  cash ( k Z j )  4 

m=l 4 ~ j  ~j c m  '0s ( p m  X i )  COB c ~ m  zj) ~ l (  p m ( 5 ) )  I,( /bm( :)) 
2 L j  R 9 
mn ri 

- - (A) exp ( - mnl Rj - ri I /h )  cos mnZi cos mnz, 
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